Serum Lipoproteins and the Cardiovascular System

AS also affect the cardiovascular system and the serum lipid profile. Relatively few studies have been done to investigate the effect of anabolic steroids on the cardiovascular system. No longitudinal studies have been conducted on the effect of anabolic steroids on cardiovascular morbidity and mortality.

Most of the investigations have been focused on risk factors for cardiovascular diseases, and in particular the effect of anabolic steroids on blood pressure and on plasma lipoproteins. In most cross-sectional studies serum cholesterol and triglycerides between drug-free users and non-users is not different. However, during anabolic steroid use total cholesterol tends to increase, while HDL-cholesterol demonstrates a marked decline, well below the normal range. Serum LDL-cholesterol shows a variable response: a slight increase or no change. The response of total cholesterol seems to be influenced by the type of training that is done by the athlete. When a great deal of the exercise consists of aerobic exercise, the increasing effect of AS is counterbalanced by an exercise-induced increasing effect, which may result in a net decline in total cholesterol. Aerobic training does not seem to be able to offset the steroid-induced decline in HDL-cholesterol and its subfractions HDL-2, and HDL-3.

The precise effect of anabolic steroids on LDL-cholesterol is unknown yet. It appears that anabolic steroids influence hepatic triglyceride lipase (HTL) and lipoprotein lipase (LPL). Males usually have higher levels of HTL, while females have higher LPL activity. HTL is primarily responsible for the clearance of HDL-cholesterol, while LPL takes care of cellular uptake of free fatty acids and glycerol. Androgens and anabolic steroids stimulate HTL, presumably resulting in decreased serum levels of HDL-cholesterol.

The effect of anabolic steroids on triglycerides is not well known. It is suggested that relatively low doses do not affect the serum triglyceride levels, while it cannot be excluded that higher doses elicit an increase.

No unanimity exists about the influence of anabolic steroids on arterial blood pressure. The response is most probably dose dependent. There is some data suggesting that high doses increase diastolic blood pressure, whereas low doses fail to have a significant effect on diastolic blood pressure. Increases in diastolic blood pressure normalize within 6-8 weeks after abstinence from anabolic steroids. It appears that repeated intermittent use of anabolic steroids does not affect diastolic blood pressure during drug free periods.

There is evidence that the use of anabolic steroids does elicit structural changes in the heart and that the ischemic tolerance is decreased after steroid use. Echocardiographic studies in bodybuilders, using anabolic steroids, reported a mild hypertrophy of the left ventricle, with a decreased diastolic relaxation, resulting in a decreased diastolic filling. Some investigators have associated cardiomyopathy, myocardial infarction, and cerebro-vascular accidents with abuse of anabolic steroids. However, a possible causal relationship could not been proved, because longitudinal studies that are necessary to prove such a relationship, have not been conducted yet. There is convincing evidence that oral administration of anabolic steroids has stronger adverse effects on the mentioned variables than parenteral administration.

Although the effects of anabolic steroids have an unfavorable influence on the risk factors for cardiovascular disease, no data are available about the long term effects. Most of the mentioned effects appear to reverse within 6-8 weeks after abstention. It is unknown, however, whether the structural changes as reported in the heart, are reversible as well.

Psychological Effects

Administration of AS may affect behavior. Increased testosterone levels in the blood are associated with masculine behavior, aggressiveness and increased sexual desire. Increased aggressiveness may be beneficial for athletic training, but may also lead to overt violence outside the gym or the track. There are reports of violent, criminal behavior in individuals taking AS. Other side effects of AS are euphoria, confusion, sleeping disorders, pathological anxiety, paranoia, and hallucinations.

Anabolic steroid users may become dependent on the drug, with symptoms of withdrawal after cessation of drug use. The withdrawal symptoms consist of aggressive and violent behavior, mental depression with suicidal behavior, mood changes, and in some cases acute psychosis. At present it is unknown which individuals are particularly at risk. It is likely that great individual differences in responsiveness may exist. Some individuals try to minimize the withdrawal affects by administration of human choriogonadotropins (hCG), in order to enhance endogenous testosterone production. However, it is unknown in how far the hCG administration is successful in ameliorating the withdrawal effects.

Additional Side Effects

In addition to the mentioned side effects several others have been reported. In both males and females acne are frequently reported, as well as hypertrophy of sebaceous glands, increased tallow excretion, hair loss, and alopecia. There is some evidence that anabolic steroid abuse may affect the immune system, leading to a decreased effectiveness of the defense system. Steroid use decreases the glucose tolerance, while there is an increase in insulin resistance. These changes mimic Type II diabetes. These changes seem to be reversible after abstention from the drugs.

There are some case reports suggesting a causal relationship between anabolic steroid use and the occurrence of Wilms tumor, and prostatic carcinoma. In the literature also sleep apnea has been reported, which has been associated with AS-induced increased in hematocrit, leading to blood stasis and thrombosis.

AS use may affect thyroid function. Administration of AS has been found to decrease thyroid stimulation hormone (TSH), and the products of the thyroid gland. In addition, thyroid binding globulin (TBG). These changes reversed within weeks after discontinuation of AS use.

A serious consequence of AS use may be the multiple drug abuse. On the one hand athletes use different kinds of drugs in an attempt to counterbalance the side effects: hCG, thyroid hormones, anti-estrogens, anti-depressants. On the other hand people try to support the anabolic effects of AS by using additional anabolic hormones as for instance: different types of AS at the same time, growth hormone, insulin, erythropoietine, and clenbuterol. Because most of this takes place outside the official medical circuit, it is likely that these practices may lead to serious conditions.